REPORT

Determination according to EN 13381-4:2013 of the contribution to the fire resistance of structural steel members by a three or four sided single layer boxed protection from PROMATECT®-200 boards Assessment report numerical regression

Report no.
2013-Efectis-RO344e
Prompt Research and Technology Centre N.V. Bormstratat 2.4 B-2830 Tisselt Belgium

Author (s)
Sponsor

Project number
Date of issue
Number of pages

2013344
September 2013
L.M. Noordijk, M.SC.

CONTENTS

1. SUBJECT

3
2. INVESTIGATION
3. SPONSOR AND MANUFACTURER
3.1 sponsor
3.2 manufacturer
4. LOCATION AND DATES OF THE INVESTIGATIONS
5. TEST SPECIMENS
5.1 test specimens
5.2 dimensions of the test specimens
5.3 corrected times

6. ASSESSMENT OF RESULTS
6.1 correction of the times to reach certain steel temperatures of the columns (mechanical behaviour)
6.2 determination of the effective heat conductivity-eoefficient (thermal behaviour) 7
6.3 graphs
6.3 graphs
7. CONCLUSION 8
8. CONDITIONS AND FIELD OF APRLHEATION 8
9. MEASURED CORRECTED TIMES VS. CALCULATED TIMES 10
10. DESIGN GRAPHS 13
11. DESIGN TABLES

1. SUBJECT

PROMATECT®-200, a fire resistant board material
2. INVESTIGATION

Contribution, according to EN 13381-4:2013, to the fire resistance of strastural skeel members by a single layer three or four sided boxed protection from PROMATECT®-200 boards. The method for processing the results is the numerical regression assessment method.

3.1 SPONSOR

Promat Research and Technology Centre N.V. Bormstraat 24 B-2830 Tisselt Belgium

3.2 MANUFACTURER

Promat Research and Technology Centre M.V
Bormstraat 24
B-2830 Tisselt
Belgium
4. LOCATION AND DATES OF THE INVESTIGATIONS

9 unloaded short columns

- Laboratory: TNø Centre for Fire Research, Rijswijk, The Netherlands;
- Test dates: 23 and 30 August and 6 September 2001;
- TNO Report: 2001-CVB-RO4661.

1 unloaded short column

- Laboratory: Efectis Nederland BV, Rijswijk, The Netherlands;
- Test dates: 30 November 2011;
- Efectis Report: 2011-Efectis-R0694

3 unloaded short cotumns
Waboratory: Efectis Nederland BV, Rijswijk, The Netherlands;
Test dates: 7 March 2012;

- Efectis Report: 2012-Efectis-R0223.

2 loaded beams and 4 unloaded short columns

- Laboratory: Efectis Nederland BV, Rijswijk, The Netherlands;
- \quad Test dates: 13-3-2013 (15 mm beam test) and 23-5-2013 (30 mm beam test and 4 unloaded columns)
Efectis Report: 2013-Efectis-R0188 and 2013-Efectis-R0228

5. TEST SPECIMENS

For a description of the test specimens and the method of application of the boards we refer to the test reports mentioned in the table below. A summary of the test specimens used for the assessment according to EN 13381-4:2013 (numerical regression method) is given in the table below.

5.1 TEST SPECIMENS

Promat Research and Technology Centre N.V.

5.2 DIMENSIONS OF THE TEST SPECIMENS

Type	Protection thickness	Height	Width	Thickness flange	Thickness web	Area	Perimeter	Actual section factor
	mm	mm	mm	mm	mm	m 2	m	$\mathrm{~m}-1$
HEM 280	15	308	285	32.7	17.8	0.02293056	1.186	52
HEM 280	20	310	190	32.4	19.2	0.01700276	1	59
HEM 280	25	310	287	32.7	19.1	0.023442	1.194	51
HEA 200	15	199	195	10.0	7.1	0.00515211	0.788	153
HEA 200	25	200	196	10.0	7.2	0.00519712	0.792	152
HEA 200	30	191	201	10.2	6.7	0.005243	0.784	150
IPE 200	15	203	100	8.8	5.7	0.00281678	0.606	215
IPE 200	20	200	100	89	5.5	0.00277265	0.6	216
IPE 200	25	200	100	8.8	5.4	0.00274496	0.6	219
IPE 200	30	202	102	7.9	5.7	0.002673	0.608	227
IPE 80	20	80	47	5.4	4.2	0.0008017	0.254	317
IPE 80	25	83	47	6.4	4.1	0.000797425	0.254	319
IPE 80	30	80	45	4.8	4.2	0.000728	0.25	344

5.3 CORRECTED TIMES

$\begin{gathered} \mathrm{Pi} \\ \mathrm{~m}-1 \\ \hline \end{gathered}$	52	59	5	153	152	150	215	216	219	227	317	319	344
$\begin{aligned} & \hline \text { DFT } \\ & \mathrm{mm} \end{aligned}$	15	201	25	≥ 15	25	30	15	20	25	30	20	25	30
Temp ${ }^{\circ} \mathrm{C}$	Time [min.]	Tinme [min.]	Time [min. 1	Time [min.]	Time [min.]	Time [min.]							
350	69.15	103.96	130.84	38.45	57.06	83.75	35.05	45.72	47.02	76.63	38.67	41.32	63.26
400	78.02	118.94	148.95	42.68	63.82	91.56	38.54	50.08	51.73	82.57	41.82	44.52	66.8
450	87.45	134.93	169.16	47.88	71.36	100.48	42.2	54.85	56.99	89.54	45.36	48.13	71.07
500	98.44	151.7	191.5	52.35	79.92	110.94	46.23	60.19	62.76	97.91	49.45	52.34	76.34
550	104.73	168.92	215.82	57.67	89.61	123.2	\$0.6	66.26	69.35	107.69	54.2	57.26	82.51
600	116.24	183.39	236.85	63.36	99.79	133.95	55.6	73.34	76.32	115.88	59.35	62.4	87.16
650	125.65	201.23	258.34	69.5	111.97	148.33	61.27	81.81	84.19	127.42	65.45	68.61	93.85
700	135.69	218.83	275.94	75.97	126.09	164.04	67.45	92,1	92.33	140.62	72.48	75.95	101.39
750	142.05	237.04	293.44	82.76	145.79	182.84	74.92	$105 / 32$	103.34	158.54	81.52	84.8	110.9

6. ASSESSMENT OF RESULTS

6.1 CORRECTION OF THE TIMES TO REACH CERTAIN STEEL TEMPERATURES OF THE COLUMNS (MECHANICAL BEHAVIOUR)

From the measured steel temperatures of the loaded beams en the unloaded reference beams characteristic temperatures were determined according to par. 3.1.11 in EN 13381-4:2013.
With the times to reach certain characteristic temperatures correction factors were determined. In agreement with Annex D of EN 13381-4:2013, the correction temperatures above the characteristic temperature at which failure of the toaded section occurred, the minimum observed correction factor just before failure is used. The temperature correction factors for single layer Promatect-200 boards are given in ffgure 6.1.)

Figure 6.1 temperature coryection factors for both beam tests.
These correction factors were, according to EN 13381-4:2013, applied to the times to reach certain average temperatures in the columns.

6.2 DETERMINATION OF THE EFFECTIVE HEAT CONDUCTIVITY COEFFICIENT (THERMAL BEHAVIOUR)

According to EN 13381-4:2013 the effective heat conductivity coefficient was determined with the following formula.
$t=a_{0}+a_{1} d_{p}+a_{2} \frac{d_{p}}{A_{m} / V}+a_{3} \theta_{a}+a_{4} d_{p} \theta_{a}+a_{5} d_{p} \frac{\theta_{a}}{A_{m} / V}+a_{6} \frac{\theta_{a}}{A_{m} / V}+a_{7} \frac{1}{A_{m} / V}$

Wherein:
t minutes
d_{p}
A_{m} / V
$a_{0} t / m a_{7}$
θ_{a}
is the corrected time to reach design temperature θ_{a} in is the board thickness in mm is de measured section factor in m^{-1} are constants is the critical steel temperature in

The constants $\mathrm{a}_{0} \mathrm{t} / \mathrm{m} \mathrm{a}_{7}$ are determined using linear regression techniques following the criteria of EN 13381-4 :2010:
a) For each short section the predicted time to reath the design temperature shall not exceed the corrected time by more than 15%
b) The mean value of all percentage differences as catculated in a) shall be less than zero
c) A maximum of 30% of all individual vatues of all percentage differences as calculated in a) shall be more than zero

The results of the calculation are:

$t=-27.301+1.478086 \times d_{p}+(-202.249) \times \frac{d_{p}}{d_{m}}+0.068536 \times \theta_{a}+(-0.00018) \times d_{p} \theta_{a}+$
$1.188467 \times d_{p} \frac{\theta_{a}}{A_{m} / V}+\left(-11.1377 \times \times \frac{\theta_{a}}{A_{m} / V}+3467.681 \times \frac{1}{A_{m} / V}\right.$

6.3 GRAPHS

Based on the effective heat conductivity coefficient two sets of data were calculated:

- Graphs in Figure to. Tto 10.9 in which for a specific design steel temperature (350 to $750^{\circ} \mathrm{C}$ in stens of $50^{\circ} \mathrm{C}$) the relation between the fire resistance and the section factor is given fora certain protected structural steel member.
- Tables in chapter 11 which give the required thickness for a certain fire resistance (in minutes) for a given critical steel temperature and section factor.

The fire resistance of structural steel members protected with a single layer three or foursided boxed protection from PROMATECT®-200 may according to EN 13381-4:2013 be determined using figures $10.1 \mathrm{t} / \mathrm{m} 10.9$ and the tables in chapter 11 under the conditions given in chapter 8 of this report.

8. CONDITIONS AND FIELD OF APPLICATION

The section factor has to be determined according to figure 1 of EN 13381-4:2013.
The figures 10.1 to 10.9 and the tables in chapter 11 are only valid under the conditions

Efectis Nederland Report
2013-Efectis-R0344e
September 2013
Promat Research and Technology Centre N.V.
mentioned below:

- $46 \mathrm{~m}-1 \leq \mathrm{Am} / \mathrm{V} \leq 378 \mathrm{~m}-1$ (section factor)
- $14.25 \leq \mathrm{dp} \leq 31.5 \mathrm{~mm}$ (thickness)
- $350^{\circ} \mathrm{C} \leq \theta \mathrm{a} \leq 750^{\circ} \mathrm{C}$

If the figures in chapter 10 or the tables in chapter 11 are used, intermediate values for the critical steel temperature may be interpolated using linear interpolation.
The results in chapter 10 and 11 are valid for three and four sided boxed pretection.

P.W.M. Kortekaas

Project Leader Resistant to Fire

9. MEASURED CORRECTED TIMES VS. CALCULATED TIMES

Critical steel temp ${ }^{\circ} \mathrm{C}$	Thickness mm	Section factor m-1	Tmeas Min.	Tcalc Min.	Tcalc/Tmeas
350	15	52	69.15	70.71	1.023
350	20	59	103.96	89.46	0.861
350	25	51	130.34	127.41	0.978
350	15	153	38.45	35.86	0.933
350	25	152	68.5	64.06	0.935
350	30	150	83.75	78.62	0.939
350	15	215	35.05	30.69	0.875
350	20	216	47.02	42.6	0.906
350	25	219	61.85	54.27	0.877
350	30	227	76.63	65.23	0.851
350	20	317	41.32	36.99	0.895
350	25	319	48.47	47.31	0.976
350	30	344	63.26	(56.36) 0.891
400	15	52	78.02	80.43	1.031
400	20	59	118.94	103.42	0.869
400	25	51	148.95	14882	0.999
400	15	153	42.68	41.34	0.969
400	25	152	45.42	73.37	0.973
400	30	150	91.56	89.95	0.982
400	15	215	38.54	35.53	0.922
400	20	216	51.73	48.78	0.943
400	25	219	67). 57	61.72	0.913
400	30	227	82.57	73.79	0.894
400	20	317	44.52	42.23	0.949
400	25	319	51.62	53.43	1.035
400	$30 \sqrt{ }$	344	66.8	63.08	0.944
450	15	52	87.45	90.16	1.031
450	20	59	134.93	117.37	0.87
450	$\sqrt{25}$	- 51	169.16	170.24	1.006
450	15	153	47.38	46.82	0.988
450	25	152	83.13	82.69	0.995
450	30	150	100.48	101.28	1.008
450	15	215	42.2	40.38	0.957
450	20	216	56.99	54.95	0.964
450	25	219	74.09	69.16	0.933
450	30	227	89.54	82.35	0.92
450	20	317	48.13	47.47	0.986
450	25	319	55.2	59.54	1.079

10. DESIGN GRAPHS

Figure 10.1 : Fire resistance as function of the section factor and the board thickness for a critical steel temperature of $350^{\circ} \mathrm{C}$.

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5 : Fire resistance as function of the section factor and the board thickness for a critical steel temperature of $550^{\circ} \mathrm{C}$.

Figure 10.6 : Fire resistance as function of the section factor and the board thickness for a critical steet temperature of $600^{\circ} \mathrm{C}$.

Figure 10.7 : Fire resistance as function of the section factor and the board thickness for a critical stee temperature of $650^{\circ} \mathrm{C}$.

Figure 10.8 : Fire resistance as function or the section factor and the board thickness for a critical steel temperature of $700^{\circ} \mathrm{C}$.

Figure 10.9 : Fire resistance as function of the section factor and the board thickness for a critical steel temperature of $750^{\circ} \mathrm{C}$.

[^0]The European experts in fire safety

Figure 10.1 : critical steel temperature $350^{\circ} \mathrm{C}$
(

[^1]
Figure 10.3 : critical steel temperature $450^{\circ} \mathrm{C}$

[^2]Efectis Nederland Report
\qquad
efectis
The European experts in fire safety

Efectis Nederland Report

REPORT
Promat Research and Technology Centre N.V.

Figure 10.6 : critical steel temperature $600^{\circ} \mathrm{C}$
REPORT
2013-Efectis-R0344
September 2013
Promat Research a
Efectis Nederland Report
\qquad
Nfectis
The European experts in fire safety

Figure 10.7 : critical steel temperature $650^{\circ} \mathrm{C}$

[^3](

[^4]\qquad
11. DESIGN TABLES

Design table 1 : fire resistance 30 minutes required protection thickness in mm

Section factor m-1	Critical steel temperature ${ }^{\circ} \mathrm{C}$								
	350	400	450	500	550		659	700	750
0	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
45.9	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
50	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
60	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
70	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
80	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
90	14.2	14.2	14.2	14.2	142	14.2	14.2	14.2	14.2
100	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
110	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
120	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
130	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
140	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
150	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
160	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
170	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
180	14.2	14.2	14.8	14.2	14.2	14.2	14.2	14.2	14.2
190	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
200	14.3	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
210	14.6	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
220	14.8	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
230	15.1	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
240	15.3	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
250	15.5	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
260	15.7	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
270	15.9	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
280		14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
290	16.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
300	$\sqrt{6.4}$	14.4	14.2	14.2	14.2	14.2	14.2	14.2	14.2
310	16.5	14.5	14.2	14.2	14.2	14.2	14.2	14.2	14.2
320	16.7	14.6	14.2	14.2	14.2	14.2	14.2	14.2	14.2
330	16.8	14.8	14.2	14.2	14.2	14.2	14.2	14.2	14.2
340	17	14.9	14.2	14.2	14.2	14.2	14.2	14.2	14.2
350	17.1	15	14.2	14.2	14.2	14.2	14.2	14.2	14.2
360	17.2	15.1	14.2	14.2	14.2	14.2	14.2	14.2	14.2
370	17.3	15.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
378.4	17.4	15.3	14.2	14.2	14.2	14.2	14.2	14.2	14.2

Efectis Nederland Report
2013-Efectis-R0344e
September 2013
REPORT

Design table 2 : fire resistance 60 minutes required protection thickness in mm

Section factor m-1	Critical steel temperature ${ }^{\circ} \mathrm{C}$								
	350	400	450	500	550	600	650	700	750
0	14.2	14.2	14.2	14.2	14.2	44.2	14.2	14.2	14.2
45.9	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
50	14.2	14.2	14.2	14.2	14.2	44.2	14.2	14.2	14.2
60	14.3	14.2	14.2	14.2	14.2	(14.2	14.2	14.2	14.2
70	15.6	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
80	16.9	15.1	14.2	14.2	14.2	+14,2	14.2	14.2	14.2
90	18.1	16	14.5	14.2	14.2	14.2	14.2	14.2	14.2
100	19.1	16.9	15.3	14.2	14.2	14.2	14.2	14.2	14.2
110	20.1	17.8	16	14.6	14.2	14.2	14.2	14.2	14.2
120	21	18.6	16.7	15.2	14.2	J14.2	14.2	14.2	14.2
130	21.9	19.3	17.3	15.8	14.5	14.2	14.2	14.2	14.2
140	22.7	20	18	163	14.9	14.2	14.2	14.2	14.2
150	23.4	20.7	18.5	16.8	15.4	14.2	14.2	14.2	14.2
160	24.1	21.3	19.1	17.3	15.8	14.6	14.2	14.2	14.2
170	24.7	21.9	19.6	(178)	16.2	14.9	14.2	14.2	14.2
180	25.4	22.4	20.1	18.2	16.6	15.3	14.2	14.2	14.2
190	25.9	23	20.6	18.6	17	15.6	14.4	14.2	14.2
200	26.5	23.5	24	19	17.3	15.9	14.7	14.2	14.2
210	27	23.9	21.5	19.4	17.7	16.2	14.9	14.2	14.2
220	27.5	24.4	21.9	19.8	18	16.5	15.2	14.2	14.2
230	27.9	24.8	22.3	20.2	18.3	16.8	15.4	14.2	14.2
240	28.3	25.2	22.7	20.5	18.7	17.1	15.7	14.5	14.2
250	28.7	25/6	23	20.8	19	17.3	15.9	14.7	14.2
260	29.1	26	23.4	21.2	19.3	17.6	16.1	14.9	14.2
270	29.5	26.4	23.7	21.5	19.5	17.8	16.4	15.1	14.2
280	29.9	26.7	24	21.8	19.8	18.1	16.6	15.2	14.2
290	30.2	27	24.4	22.1	20.1	18.3	16.8	15.4	14.2
300	30.5	27.4	24.7	22.3	20.3	18.6	17	15.6	14.4
310	30.8	27.7	24.9	22.6	20.6	18.8	17.2	15.8	14.5
320	31.1	27.9	25.2	22.9	20.8	19	17.4	15.9	14.7
330	(31.4	28.2	25.5	23.1	21	19.2	17.6	16.1	14.8
340	-	28.5	25.7	23.4	21.3	19.4	17.8	16.3	14.9
350		28.8	26	23.6	21.5	19.6	17.9	16.4	15.1
360	-	29	26.2	23.8	21.7	19.8	18.1	16.6	15.2
370	-	29.2	26.5	24	21.9	20	18.3	16.7	15.3
378.4	-	29.4	26.7	24.2	22.1	20.1	18.4	16.9	15.4

Efectis Nederland Report 2013-Efectis-R0344e
September 2013
REPORT

Design table 3 : fire resistance 90 minutes required protection thickness in mm

Section factor $\mathrm{m}-1$	350	400	450	500	550	600	650	700	750
	17	15.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
45.9	17	15.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2
50	18	16.1	14.7	14.2	14.2	14.2	14.2	14.2	14.2
60	20.3	17.9	16.2	15	14.2	14.2	14.2	14.2	14.2
70	22.4	19.7	17.7	16.2	15.1	14.2	14.2	14.2	14.2
80	24.3	21.3	19.1	17.5	16.1	15.1	14.2	14.2	14.2
90	26	22.8	20.4	18.6	17.1	15.9	14.9	14.2	14.2
100	27.6	24.2	21.7	19.7	18.1	16.8	15.7	14.8	14.2
110	29.1	25.5	22.8	20.7	19	17	6	16.4	15.4
120	30.5	26.8	23.9	21.7	29.9	18.4	17.1	16	15.5
130	-	27.9	25	22.6	20.7	19.1	17.8	16.6	15.6
140	-	29	25.9	23.5	21.5	19.8	18.4	17.2	16.1
150	-	30	26.9	24.3	22.2	20.5	19	17.7	16.6
160	-	31	27.8	25.1	23	21.2	19.6	18.3	17.1
170	-	-	28.6	25.9	23.7	21.8	20.2	18.8	17.6
180	-	-	29.4	26.6	24.4	22.4	20.7	19.3	18
190	-	-	30.2	27.3	25	23	21.3	19.8	18.5
200	-	-	30.9	28	25.6	23.6	21.8	20.3	18.9
210	-	-	-	28.3	26.2	24.1	22.3	20.7	19.3
220	-	-	-	29.3	26.8	24.7	22.8	21.2	19.7
230	-	-	-	29.9	27.4	25.2	23.3	21.6	20.1
240	-	-	-	30.5	27.9	25.7	23.7	22	20.5
250	-	-	-	31	28.4	26.1	24.2	22.4	20.9
260	-	-	-	-	28.9	26.6	24.6	22.8	21.2
270	-	-	-	-	29.4	27.1	25	23.2	21.6
280	-	-	-	-	29.9	27.5	25.4	23.6	21.9
290	-	-	-	-	30.3	27.9	25.8	24	22.3
300	-	-	-	-	30.7	28.3	26.2	24.3	22.6
310	-	-	-	-	31.2	28.7	26.6	24.7	22.9
320	-	-	-	-	-	29.1	26.9	25	23.3
330	-	-	-	-	-	29.5	27.3	25.3	23.6
340	-	-	-	-	-	29.9	27.6	25.7	23.9
350	-	-	-	-	-	30.2	28	26	24.2
360	-	-	-	-	-	30.6	28.3	26.3	24.4
370	-	-	-	-	-	30.9	28.6	26.6	24.7
378.4	-	-	-	-	-	31.2	28.9	26.8	24.9

REPORT

Design table 4 : fire resistance 120 minutes required protection thickness in mm

Section factor m-1	Critical steel temperature ${ }^{\circ} \mathrm{C}$								
	350	400	450	500	550	600	650	700	750
0	22	19.3	17.5	16.1	15	14.2	14.2	14.2	14.2
45.9	22	19.3	17.5	16.1	15	14.2	14.2	14.2	14.2
50	23.3	20.5	18.4	16.9	15.7	14.8	14.2	14.2	14.2
60	26.4	23	20.6	18.8	17.4	16.2	15.3	14.5	14.2
70	29.2	25.4	22.6	20.6	18.9	17.6	16.5	15.6	14.8
80	-	27.6	24.6	22.2	20.4	18.9	17.7	16.7	15.8
90	-	29.6	26.4	23.8	21.8	20.2	18.8	17.7	16.7
100	-	-	28.1	25.3	23.2	21.4	19.9	18.7	17.6
110	-	-	29.6	26.8	-24.5	22.0	21	19.6	18.5
120	-	-	31.2	28.1	<25.7	23.7	22	20.6	19.3
130	-	-	-	29.4	$\underline{26.9}$	24.8	23	21.5	20.1
140	-	-	-	30.7	28	25.8	23.9	22.3	20.9
150	-	-	-	-	29.)	26.8	24.8	23.2	21.7
160	-	-	-		30,1	27.8	25.7	24	22.4
170	-	-	-	-	$\triangle 31.1$	28.7	26.6	24.7	23.1
180	-	-	-	,)	29.6	27.4	25.5	23.8
190	-	-		-	-	30.4	28.2	26.2	24.5
200	-	-			-	31.2	28.9	26.9	25.2
210	-	-		\rightarrow	-	-	29.7	27.6	25.8
220	-	-			-	-	30.4	28.3	26.4
230	-	-		-	-	-	31.1	28.9	27
240	-	-	-	-	-	-	-	29.6	27.6
250	-			-	-	-	-	30.2	28.2
260	-		-	-	-	-	-	30.8	28.8
270	-		-)	-	-	-	-	31.4	29.3
280	-		.	-	-	-	-	-	29.8
290	-		$>$	-	-	-	-	-	30.4
300		-	-	-	-	-	-	-	30.9
310		-	-	-	-	-	-	-	31.4

Efectis Nederland Report
2013-Efectis-R0344e
September 2013
Promat Research and Technology Centre N.V.

Design table 5 : fire resistance 150 minutes required protection thickness in mm

Section factor $\mathrm{m}-1$	Critical steel temperatures ${ }^{\circ} \mathrm{C}$										
	350	400	450	500	550	600	650	700	750		
0	27	23.4	20.9	19.1	17.7	16.6	15.6	14.9	14.2		
45.9	27	23.4	20.9	19.1	17.7	16.6	15.6	14.9	14.2		
50	28.7	24.8	22.1	20.1	18.6	17.4	16.4	15.5	14.8		
60	-	28.1	24.9	22.6	20.7	19.3	18.1	17.1	16.2		
70	-	31.1	27.5	24.9	22.8	21.1	19.7	18.5	17.5		
80	-	-	30	27	24.7	22.8	21.3	19.9	18.8		
90	-	-	-	29.1	26.5	24.5	22.8	21.3	20.1		
100	-	-	-	31	28.3	26.1	24.2	22.6	21.3		
110	-	-	-	-	30	27.6	25.6	23.9	22.4		
120	-	-	-	-	2	-	29	26.9	25.1		
130	-	-	-	-	-	30.5	28.2	26.3	24.7		
140	-	-	-	-	-	-	29.5	27.5	25.7		
150	-	-	-		-	-	30.7	28.6	26.8		
160	-	-	-	-	-	-	-	29.6	27.7		
170	-	-	-	-	-	-	-	30.7	28.7		
180	-	-	-	-	-	-	-	-	29.7		
190	-	-	-	-	-	-	-	-	30.6		
200	-	-	-	-	-	-	-	-	31.5		

Design table 6 : fire resistance 180 minutes requiked protection thickness in mm

Section factor m-1	Critical steel temperature ${ }^{\circ} \mathrm{C}$								
	350	400	450	500	550	600	650	700	750
0	-	27.5	24.4	22.1	20.4	19	17.8	16.9	16.1
45.9	-	27.5	24.4	22.1	20.4	19	17.8	16.9	16.1
50	-	29.2	-25.9	23.4	21.5	20	18.7	17.7	16.8
60	-	-	29.3	26.4	24.1	22.3	20.8	19.6	18.5
70	-	-	-	29.2	26.6	24.6	22.9	21.4	20.2
80		\bigcirc	-	-	29	26.7	24.8	23.2	21.8
90			-	-	31.3	28.7	26.7	24.9	23.4
100	-	\cdots	-	-	-	30.7	28.5	26.6	24.9
110	-	-	-	-	-	-	30.2	28.1	26.4
120	,)	-	-	-	-	-	29.7	27.8
130		-	-	-	-	-	-	31.2	29.2
140	-	-	-	-	-	-	-	-	30.5

Efectis Nederland Report 2013-Efectis-R0344e

REPORT

Design table 7 : fire resistance 210 minutes required protection thickness in mm

Section factor m-1	Critical steel temperature ${ }^{\circ} \mathrm{C}$								
	350	400	450	500	550	600	650	700	750
0	-	-	27.9	25.2	23.1	21.4	20	18.9	17.9
45.9	-	-	27.9	25.2	23.1	21.4	20	18.9	17.9
50	-	-	29.6	26.7	24.4	22.6	27.1	19.8	18.8
60	-	-	.	30.2	27.5	25.4	23.6	22.1	20.9
70	-	-	-	-	30.5	28	26	24.3	22.9
80	-	-	-	-		30,6	28.3	26.5	24.9
90	-	-	-	-)	30.6	28.5	26.8
100	-	-	-	-)	-	30.5	28.6
110	-	-	-				-	-	30.3

Design table 8 : fire resistance 240 minutes required protection thickness in mm

Section factor m-1	Critical steel temperature ${ }^{\circ} \mathrm{C}$								
	350	400	450	500		600	650	700	750
0	-	-	31.4	28.2	25.7	23.8	22.2	20.9	19.8
45.9	-	-	31.4	28.2	25.7	23.8	22.2	20.9	19.8
50	-	-		29.9	27.3	25.2	23.4	22	20.8
60	-	-			30.9	28.4	26.4	24.7	23.2
70	-	-		$\xrightarrow{-}$	-	-	29.2	27.2	25.6
80	-	-	-		-	-	-	29.7	27.9
90	-	-		-	-	-	-	-	30.1

Design table 9 : fire resistance 270 minutes required protection thickness in mm

Design table 10 :fireresistance 300 minutes required protection thickness in mm

Section factor $\mathrm{m}-1$	Critical steel temperature ${ }^{\circ} \mathrm{C}$									
	350	400	450	500	550	600	650	700	750	
0	-	-	-	-	31.1	28.6	26.6	24.9	23.4	
45.9	-	-	-	-	31.1	28.6	26.6	24.9	23.4	
50	-	-	-	-	-	30.4	28.1	26.3	24.8	
60	-	-	-	-	-	-	-	29.8	27.9	

Design table 11 : fire resistance 330 minutes required protection thickness in mm

Section factor $\mathrm{m}-1$	Critical steel temperature ${ }^{\circ} \mathrm{C}$													
0	350	400	450	500	550	600	650	700	750					
0	-	-	-	-	-	31	28.7	26.9	25.3					
45.9	-	-	-	-	-	31	28.7	26.9	25.3					
50	-	-	-	-	-	-	30.5	28.5	26.8					
60	-	-	-	-	-	-	-	-	30.3					

Design table 12 : fire resistance 360 minutes required protection thickness in mm

Section factor m-1	Critical stea/ temperature ${ }^{\circ} \mathrm{C}$								
	350	400	450	500	z_{550}	$\bigcirc 600$	650	700	750
0	-	-	-	-		-	30.9	28.9	27.1
45.9	-	-	-	\triangle	-	-	30.9	28.9	27.1
50	-	-	-		-	-	-	30.6	28.7

[^0]: P.O. Box 554-2665 ZN Bleiswijk
 Brandpuntlaan Zuid 16-2665 NZ Bleiswijk

 The Netherlands
 +31883473723

[^1]: Figure 10.2 : critical steel temperature $400^{\circ} \mathrm{C}$

[^2]: Figure 10.4 : critical steel tomperat $500^{\circ} \mathrm{C}$

[^3]: Figure 10.8 : critical steel temperature $700^{\circ} \mathrm{C}$

[^4]: Figure 10.9 : critical steel temperature $750^{\circ} \mathrm{C}$

